## Are strong $z \simeq 0.5$ MgII absorbers the signature of super-winds?

## N. Bouché<sup>1</sup>, M. Murphy<sup>2</sup>, C. Péroux<sup>3</sup>, I. Csabai<sup>4</sup>, and V. Wild

<sup>1</sup>MPE (email: nbouche@mpe.mpg.de); <sup>2</sup>IoA; <sup>3</sup>ESO; <sup>4</sup>Budapest, Hungary; <sup>5</sup>MPA

Abstract. BACKGROUND: In the process of galaxy formation, super-nova driven feedback from low-mass galaxies is the process that most readily account for the galaxy mass-metallicity relation and for the shallower galaxy luminosity function (LF) compared to the halo mass function. Absorption-selected galaxies are prime candidates for the sites of starburst activity as (1) they probe the gaseous halos of galaxies up to ~ 50 kpc (Steidel 1995), and (2) galaxies on the faint end of the LF are likely dominating the statistics. Galaxies selected via their MgII  $\lambda$ 2796/2803 doublet absorption against background QSOs are especially well suited as Mg is produced by type II supernova.

GOAL: Our project was to constrain the physical models of the gaseous halos by measuring the dark matter halo-mass  $(M_h)$  of the MgII host-galaxies *statistically*, i.e. without identifying spectroscopically the host-galaxy.

METHOD: We have used the cross-correlation  $w(r_{\theta})$  (over co-moving scales  $r_{\theta} : 0.05 - 13h^{-1}$  Mpc) between our sample of 1800  $z \simeq 0.5$  MgII absorbers with equivalent w width  $W_r^{2796} > 0.3$  Å, and 250,000 Luminous Red Galaxies (LRGs), both selected from SDSS/DR3. The cross-correlation relies on the LRG photometric redshifts, but is not affected from contaminants such as stars or foreground and background galaxies as shown theoretically in Bouché *et al.* 2005 and empirically in Bouché *et al.* 2006.

RESULTS: From the cross-correlation analysis, we found (Bouché *et al.* 2006) (i) that the absorber host-halo mean mass is  $\langle \log M_{\rm h}(M_{\odot}) \rangle = 11.94 \pm 0.31 ({\rm stat})^{+0.24}_{-0.25}$  (sys), i.e. about  $1/2 L^*$ , and (ii) an anti-correlation between halo mass  $M_h$  and equivalent width  $W_r^{2796}$ .

INTERPRETATION: One SDSS MgII absorber (system) is made of several sub-components or clouds and the stronger the equivalent with of the absorber, the more clouds per system spread over a larger velocity range ( $\Delta v$ ). This follows since each sub-component has a velocity width of ~ 5 km s<sup>-1</sup> (Churchill 1997). As result, the equivalent width  $W_r^{2796}$  is a measure of velocity width ( $\Delta v$ ) as demonstrated by Ellison 2006. Together with our SDSS results, these relations imply a mass-velocity  $M_h$ - $\Delta v$  anti-correlation. If the clouds in the host-halos were virialized, velocity and mass would have been correlated.

CONCLUSION: Therefore, our  $M_h - \Delta v$  anti-correlation shows that the clouds are not virialized in the gaseous halos of the hosts. This conclusion is best understood in the context of starburst driven outflows where the velocity  $\Delta v$  is related to bulk motion. This opens the possibility to study M82-analogs up to  $z \sim 2.0$  using the MgII selection.

Keywords. galaxies: intergalactic medium, galaxies: kinematics and dynamics, galaxies: halos, galaxies: starburst, quasars:absorption lines.

## References

Bouché N. et al., 2005, ApJ, 628, 89

- Bouché N., Murphy M. T., Péroux C., Csabai I., & Wild V. 2006, MNRAS, 371, 495
- Bergeron J., & Boissé P., 1991, A& A, 243, 344
- Churchill C. W., 1997, PhD thesis, Univ. of California, Santa Cruz
- Ellison S. L., 2006, MNRAS, 368, 335
- Steidel C. C., 1995, in Meylan G., ed., QSO Absorption Lines. Springer-Verlag, Berlin, Germany, p. 139



Figure 1. From the cross-correlation between 1800 MgII-selected galaxies and 250,000 Luminous Red Galaxies (LRGs), we found an anti-correlation between halo mass  $M_h$  and equivalent width  $W_r^{2796}$ . The equivalent width  $W_r^{2796}$  is a measure of velocity width ( $\Delta v$ ) as demonstrated by Ellison 2006. Thus, these relations together imply a mass-velocity  $M_h$ - $\Delta v$  anti-correlation. If the clouds in the host-halos were virialized, velocity and mass would have been correlated. Therefore, our  $M_h$ - $\Delta v$  anti-correlation shows that the clouds are not virialized in the gaseous halos of the hosts. This conclusion is best understood in the context of starburst driven outflows where the velocity  $\Delta v$  is related to bulk motion.

## 1. Online-Material